Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore.

نویسندگان

  • Hartmut Luecke
  • Brigitte Schobert
  • Jason Stagno
  • Eleonora S Imasheva
  • Jennifer M Wang
  • Sergei P Balashov
  • Janos K Lanyi
چکیده

Homologous to bacteriorhodopsin and even more to proteorhodopsin, xanthorhodopsin is a light-driven proton pump that, in addition to retinal, contains a noncovalently bound carotenoid with a function of a light-harvesting antenna. We determined the structure of this eubacterial membrane protein-carotenoid complex by X-ray diffraction, to 1.9-A resolution. Although it contains 7 transmembrane helices like bacteriorhodopsin and archaerhodopsin, the structure of xanthorhodopsin is considerably different from the 2 archaeal proteins. The crystallographic model for this rhodopsin introduces structural motifs for proton transfer during the reaction cycle, particularly for proton release, that are dramatically different from those in other retinal-based transmembrane pumps. Further, it contains a histidine-aspartate complex for regulating the pK(a) of the primary proton acceptor not present in archaeal pumps but apparently conserved in eubacterial pumps. In addition to aiding elucidation of a more general proton transfer mechanism for light-driven energy transducers, the structure defines also the geometry of the carotenoid and the retinal. The close approach of the 2 polyenes at their ring ends explains why the efficiency of the excited-state energy transfer is as high as approximately 45%, and the 46 degrees angle between them suggests that the chromophore location is a compromise between optimal capture of light of all polarization angles and excited-state energy transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelength-dependent photocycle activity of xanthorhodopsin in the visible region

Xanthorhodopsin (xR) is a dual-chromophore proton-pump photosynthetic protein comprising one retinal Schiff base and one light-harvesting antenna salinixanthin (SX). The excitation wavelength-dependent transient population of the intermediate M demonstrates that the excitation of the retinal at 570 nm leads to the highest photocycle activity and the excitations of SX at 460 and 430 nm reduce th...

متن کامل

A natural light-driven inward proton pump

Light-driven outward H+ pumps are widely distributed in nature, converting sunlight energy into proton motive force. Here we report the characterization of an oppositely directed H+ pump with a similar architecture to outward pumps. A deep-ocean marine bacterium, Parvularcula oceani, contains three rhodopsins, one of which functions as a light-driven inward H+ pump when expressed in Escherichia...

متن کامل

Salinibacter: an extremely halophilic bacterium with archaeal properties.

The existence of large number of a member of the Bacteroidetes in NaCl-saturated brines in saltern crystallizer ponds was first documented in 1999 based on fluorescence in situ hybridization studies. Isolation of the organism and its description as Salinibacter ruber followed soon. It is a rod-shaped, red-orange pigmented, extreme halophile that grows optimally at 20-30% salt. The genus is dist...

متن کامل

Carboxyl groups and the proton pump of bacteriorhodopsin.

The purple membrane isolated from Halobacterium halobium contains only a single protein, bacteriorhodopsin, which functions as a light-driven proton pump. Substantial structural information has been obtained which has led to specific models of protein structure in the membrane (Engelman et al., 1982; Huang et al., 1982; Agard & Stroud, 1982). The retinal chromophore of bacteriorhodopsin is boun...

متن کامل

A phylogenetically distinctive and extremely heat stable light-driven proton pump from the eubacterium Rubrobacter xylanophilus DSM 9941T

Rhodopsins are proteins that contain seven transmembrane domains with a chromophore retinal and that function as photoreceptors for light-energy conversion and light-signal transduction in a wide variety of organisms. Here we characterized a phylogenetically distinctive new rhodopsin from the thermophilic eubacterium Rubrobacter xylanophilus DSM 9941T that was isolated from thermally polluted w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 43  شماره 

صفحات  -

تاریخ انتشار 2008